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Abstract. Automatic tuning techniques have been used in the design of seve-

ral programming algorithms in recent years. This paper aims to explore the

programming routines that can be automatically adapted to the computational

system conditions. Techniques have been developed in different fields, and es-

pecially in linear algebra routines. In this work the possibility of applying

automatic optimization techniques to solve the triangular system problem is

analyzed. The routines are developed along with their theoretical execution

time, t(s) = f(s, AP , SP ), where s represents the problem size, SP are system

parameters, and AP are algorithmic parameters.

1. Introduction

During the last years different auto-optimization techniques of parallel routines have

been developed with the purpose of achieving routines that automatically tune to the

characteristics of computer systems and that are able to run efficiently independent of

the knowledge of end-users in parallel programming. The potential users of high per-

formance parallel systems are mainly scientists and engineers that require problem sol-

ving with an elevated computational cost, but that normally do not have an extended

knowledge in parallelism. Auto-optimization techniques have been applied in different

fields [Brewer 1994], specially in linear algebra routines [Chen et al. 2003], which make

up the basic computing element in the resolution of many scientific problems.

One of the techniques used in the development of routines with auto-optimization capabi-

lity uses the parametrization of the execution time model [Cuenca et al. 2005]. The mo-

dels can be used to make some of the decisions that enable the routine to reduce its execu-

tion time. The methodology applied consists of identifying algorithm and system parame-

ters to analyze the algorithm, both theoretically and experimentally, with the purpose of

determining the influence of system parameter values in the selection of the best algo-

rithm parameter values. The team that has developed this piece of work has experience

in the application of automatic optimization techniques in Jacobi methods for the eigen-

value problem [Cuenca et al. 2001], LU and QR factorization [Song et al. 2010], and the
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problem of least squares in Toeplitz matrices [Alberti et al. 2004]. The application of the

previous ideas to different algorithmic schemes is currently being worked on, such as dy-

namic programming schemes [Martı́nez et al. 2006], as well as traversal algorithms for

solution trees [Giménez et al. 2006]. The present work is mainly concerned with auto-

optimization of parallel algorithm schemes knowledge field, studying the application of

algorithm optimization techniques in which an execution time parametrization is able to

be done, centering on multicore systems.

In this work, analysis and application of automatic optimization techniques were pro-

posed. The basic idea behind of the optimization consists of obtaining routine execution

time in the form of: t(s) = f(s, AP, SP) [Cuenca et al. 2004], where s represents the size

of the problem, SP system parameters, and AP algorithm parameters. The intention is to

study techniques that allow the development of parallel routines that automatically tune

to the characteristics of the parallel system where they will be executed. This way the

users are provided with routines capable of running efficiently in the respective working

environment, regardless of the characteristics of the system and the knowledge of the user

about parallel programming.

Firstly, to test the developed methodology, the resolution of triangular systems is studi-

ed as an example. In these cases, the system parameters are costs of basic arithmetic

operations and communication, and algorithmic parameters are block size and number

of threads. Some methods used to estimate these parameters are analyzed. In execution

time, the value of the algorithm parameters with which the problem is solved is obtained

by estimating the values through the theoretical model, where values of system parameters

are automatically substituted (number of threads and block size), previously obtained in

an installation process.

2. Experimental Results

This section shows experimental results of the implemented algorithms for the auto-

optimized to solve the triangular system problem. Experiments were done in one type

of architecture, machine with 2 processors with 4 physical cores per processor. Including

architecture IntelrCore 2 Quad, 3 GHz clock rate and 16 GB. An icc compiler and MKL

library for LAPACK [MKL 2009] were used, are Intel proprietary providing support for

the OpenMP API. Previously, a methodology to self-optimized parallel implementation

has been presented. The code was run several times with different problem sizes (n) for

different block sizes (sb) and varying the number of threads (nth) take this off through an

executable code. A significant improvement in execution time was obtained and search

is done to find the best SP parameters. A self-optimized parallel implementation has

been taken as parameter to build the theoretical modeling of the execution time with the

following:

t(n) = f(n,AP, g(n,AP )) = f(n, sb, nth, g(n, sb, nth)). (1)

The optimum block size and number of threads are not a constant value. It depends on

the platform and on the problem size. Thus, a good selection for each specific case of

this block size and number of threads is important. For the system the routine has been

executed for different reasonable block sizes (16, 32, 64, 128, 512 and 1024) and number

of threads (2, 3, 4, 5, 6, 7 and 8) comparing the experimental with theoretical model.
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In charts of the Fig. 1 (1)(2) it is a comparison performance between sequential implemen-

tation corresponding a call DTRSV BLAS routine and self-optimized parallel implemen-

tation with the best parameters. Basing on execution times observed, has been obtained

automatically optimum number of threads and block size, finding the best combination of

parameters for this platform. After varying the amount of threads in experiments, it has

been observed that performance was improved by using a block size of 1024. This is justi-

fied by the cache-level exploring nature of multicore architecture which perfectly adjusts

to the block size found. The charts in the Fig. 1 (3)(4) shows the comparison between

the performance of self-optimized parallel and sequential implementation using block de-

composition, having the same trend as the previous case, but with a potential increase

due to the number of processors and cores of the tested node. When looking at the table

for optimal experimented block size, it can be seen that task calculation time decreases

with the number of used threads. This reduction in time occurs until we reach 8 threads

when the number of cores is 8. Moreover, asynchrony provides algorithms with super

scalability, unlike distributed memory, having in the management of performed tasks, a

workload balance between thread execution.
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Figure 1. (1)(2) Self-Optimized for search the best block size and number of

threads. (3)(4) Comparison between the performance the self-optimized paral-

lel versus sequential routine. (5)(6) Comparison speedups with several cores.
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3. Conclusions

This work has studied the usage of auto-optimization techniques in multicore systems

using as example the resolution of triangular systems. For instance, the resolution of

tridiagonal systems of equations have shown better performance through block decom-

position. Thus, the intention is to validate the auto-optimization methodology for a wide

range of parallel schemes.

However, it is know that the presented technique (i.e., the one used for the development of

libraries with the capability of automatic optimization) could be adapted to other heteroge-

neous schemes, by simply varying the strategy of workload to processors. On the other

hand, it could be interesting the usage previously acquired knowledge in parallel skeleton

schemes. Moreover, users will be able to easily generate specific functions of the skeleton,

just programming in sequential way. Thus, the parallel execution becomes transparent to

the user, neither being necessary parallel programming nor knowledge in parallelism to

be able to obtain reduced execution times.
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